Chow Motives

Idea of Grothendieck: Universal cohomology theory.

Let k be a field and Var(k) be the category of smooth proj. varieties /k. A <u>nice</u> colourlogy theory is a contravariant functor H^{(:}:Var(k) → § Graded f.d. vector spaces/k}, that has good properties (such as a Weil cohomology theory).

Example 1) $X \longrightarrow H'_{et}(\overline{X}, Q_{\lambda})$ 2) $X/c \longrightarrow H^{*}_{dR}(X)$. Grothundieck: there should be a "universal" cohomology theory h: Var(k) ~ A, where A is at least an additive category, so that all other cohomology functors factor through h. Take $f \in Hom_{Var(k)}(X, Y)$ and Γ_{f} be its graph in $X \times Y$. We know $f^{*}: H'(Y) \rightarrow H'(X)$ is equal to $P_{*}(cl_{X\times Y}(\Gamma_{f}) \cdot q^{*}(-1))$, where $X \ll P \times X \times Y \xrightarrow{q} Y$. Second take: why just Γ_{f} ? If $Z \subset X \times Y$ is any subvariety, it defines a map $Z^{*}(-) = P_{*}(Cl_{X \times Y}(-), Q^{*}(-))$. If $Z \sim_{ret} Z'$ then $Z^{*} = Z'^{*}$. These are called correspondences. <u>Def:</u> Chow(k) = Category of Chow Motives. objects = smooth proj. varieties /k. morphisms = subvarieties of XXY up to Q-equiv. = A'(XXY). X ×Y × Z Pxy J Px2 X×y ××2 Y×2 X×y ××2 Y×2 Lo composition WCZXY, SCYXX, then $W \circ Z = P_{XZ} \neq (P_{XZ} + P_{YZ} + W)$ We leave associativity and DCXXX is the identity as an exercise. There are a few variations of this theme, no one has settled one the "right" one. We have a functor: h: Var(k) -> Chow(k) by (f: X > Y) -> (Ip C X × Y). Can check this is a "universal" functor and morely Chow (k) is the additivization of Var (k). Variants · Chow (k). Morphisms are dim Y-codimension. · Can use coarser equiv.

(1) Homological equiv. $Cl(z) = cl(z') \longrightarrow HC(k)$ homological motives. (2) Numerical equiv. Z.W = Z'.W & W appropriate ~~~ NC(k) numerical motives.

Big Conjecture: Homological & Numerical motives are equivalent.

Note Chow(k) is additive, but is not abelian. We at least want kernels of projectors: $p \in Hom(X, X)$, $p^2 = p$ is a projector. Hence id-p is a projector. We then want to split our variety up via Karoubi completion.

<u>Def:</u> A category is pseudo-abelian if it is additive and 1) all projectors have Kernels (equalizers) 2) Kerp⊕Ker(1-p) → X unique.

Given an additive category D its pseudo-abelian completion \widetilde{D} is : $cb = \widetilde{\xi}(X,p) X \in ob D, \ \widetilde{p}$ -projectors and $Hom((X,p),(Y,g)) = g \cdot Hom_p(X,Y) \cdot p$. This gives a pseudo-abelian category, and $i: D \rightarrow \widetilde{D}$ $X \rightarrow (X, id)$ is universal among functors from D into pseudo-abelian categories.
0
We thun have Chow(k) and $\widetilde{X} = (X, id_X).$
<u>Corollary</u> : In $\widetilde{Chow}(k)$, $\widetilde{P}' = (P', p_0) \oplus (P', p_1)$, where $p_0 = e^{x_1}$, $p_1 = 1 \times e \in A'(P' \times P')$.
We call $\tilde{e} = (\mathbb{P}^{l}, p_{0}) = \mathbb{H}$ the Tate motive. We also have a multiplication $(X, Y) \mapsto X \times Y$ (tensor category?).
<u>Fact</u> : $\vec{P}^* = \vec{\epsilon} \in \mathbb{L} \oplus \mathbb{H}^2 \oplus \cdots \oplus \mathbb{H}^n$ (in a sense $\mathbb{H} \leftrightarrow A_{k}^{\prime}$, they have the same cohomology).
<u>ч Ц Ф Ц</u>
Two steps: we want to invert IL (think of it as \otimes' ing w/a 1-D vector space). And give rational coefficients. We get Mot(k), the category of motives (chow), Mot(k) $a = Chow(k) [H^{-1}] a$. Call numerical motives NMot(k).
<u>Standard Conjectures on Algebraic Cycles</u> : Let X/c be smooth proj. of dim n. Choose an ample ZEPicX, and C.(Z) ∈ H ² (X, C). Define L: H ⁱ (X) → H ^{itz} (X) by ar → auc.(Z). <u>Thum:(Hand Lofeetetz)</u> H ⁿ⁻ⁱ L ⁱ → H ⁿ⁺ⁱ is an isomorphism Vi. Hence ∃A: H ³ → H ³⁻² such that A ⁱ : H ⁿ⁺ⁱ → H ⁿ⁻ⁱ . Moreover, ∃h _H ; which is multiplication by (j-n), and (L, A, h) are an slz-triple on H ¹ (X).
Now over any field k, H a Weil cohomology theory;
$Def: AH' = Q - spans of classes cl_{x}(-) \in H'(x).$
Now L: $AH^{i} \rightarrow AH^{i+2}$ as the operator is algebraic (here L is given by the correspondence $Z = Z(\Delta)$).
$\frac{Conjecture A: L^{i}: AH^{n-i}(x) \longrightarrow AH^{n+i}(x)}{(x) \qquad X \qquad fixed}.$
l = l = l = l! (v) = l! (v) = l = l
<u>Conjecture C:</u> $\pi^{\circ} \cdot H(X) \longrightarrow H(X)$ are algebraic.
$Fact: A \Rightarrow B \Rightarrow C'$
<u>Thun</u> : 1) B holds for all L if it holds for one. 2) B is stable under products, hyperplane sections. 3) B holds for curves, surfaces, abelian varieties, and generalized flay varieties. 4) C holds if $k = F_g$.
<u>Hedge Standard Conjecture</u> : Define $P^i = Ker(L^{n-i}: H^i \rightarrow H^{2n-i})$. Then $\forall i \leq n$, the Q-valued pairing on $A H^{2i} \cap P^{2i}$ $(x,y) \mapsto (-1)^i \langle L^{n-2i}(x) \cdot y \rangle$ is positive definite.
It chor k=0, then this holds by Hodge theory.

<u>Conjecture D:</u> If a cycle on X is numerically equivalent to zero, thun its homologically equivalent to zero.

Note the Hodge conjecture => (A=>D). Over C, the "usual" Hodge conjecture implies all of the above. Lemme Numi(X) is a f.g. abelian group. Then: Assume B(X) and Hdg(X×X). Then 1) The Q-algebra EndNMot(k) (X) is semisimple, hence a product of matrix algebras. (=> NMot(k) is abelian and semisimple Holy shit) 2) Assume X/Fg, $\phi: \overline{X} \rightarrow \overline{X}$ frob. Then $\beta H^i(X)$ is semisimple char poly has Z-coeff's, indep. of H(X) + eigs have absolute value gil2. Thim: (Jantzen) NMot(k) is abelian and semisimple (indep of std. conj.) Motivic Zeta Function: See Lunt's paper.